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Società Italiana di Fisica
Springer-Verlag 1999

Undulation instability of lamellar phases under shear:
A mechanism for onion formation?
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Abstract. We consider a lamellar phase of bilayer membranes held between two parallel plates and subject
to a steady shear. Accounting for the coupling with the shear flow of the short wavelength undulation
modes that are responsible for the membrane excess area, we argue that the flow generates an effective
force which acts to reduce the excess area. From the viewpoint of the macroscopic lamellar whose geometric
dimensions are fixed, this force translates into an effective lateral pressure. At low shear rates γ̇ this pressure
is balanced by the elastic restoring forces of the lamellar. Above a critical shear rate γ̇c ∼ d−5/2D−1/2,
where d is the interlayer distance and D is the gap spacing, the lamellar buckles into a harmonic shape
modulation, and we predict its wavelength λc and amplitude Uo. We show that our model is isomorphic to
a dilative strain, which is known to induce a similar buckling (undulation) instability. Indeed, at threshold
the wavelength is λc ∼

√
Dd and is identical in both cases. Using a non-linear analysis, we discuss how the

wavelength and amplitude vary with shear rate away from the threshold. For γ̇ � γ̇c we find λc ∼ γ̇−1/3

and Uo ∼ γ̇2/3. We then focus on the coupling of the buckling modulation itself with the flow, and obtain
a criterion for the limit of its stability. Motivated by experiments of D. Roux and coworkers, we assume
that at this limit of stability the lamellar breakups into “onion”-like, multilamellar, vesicles. The critical
shear rate γ̇∗ for the formation of onions is predicted to scale as γ̇∗ ∼ γ̇c ∼ d−5/2D−1/2. The scaling with
d is consistent with available experimental data.

PACS. 64.70.Md Transitions in liquid crystals – 61.30.Jf Defects in liquid crystals – 68.10.Et Interface
elasticity, viscosity, and viscoelasticity

1 Introduction

During recent decades there has been a lot of advance in
understanding the equilibrium phase diagrams of many
complex fluid systems, and, in particular, those of self-
assembly systems [1–3]. Even for systems were more work
needs to be done, such as those involving strong electro-
static interactions, the procedure for comparing the sta-
bility of different phases relies on well established thermo-
dynamic concepts. The uncertainty in understanding and
in predicting various observable lies mainly at the level of
modeling and approximations made in calculating system
free-energies.

Non-equilibrium transitions, such as those obtained
under steady shear, still await major breakthroughs in
understanding. Here, we would like to distinguish between
two classes: (i) One in which the shear flow selects a partic-
ular phase which otherwise exists in equilibrium, and (ii)
the other in which the shear induces a state which is either
metastable or unstable in equilibrium. For the first class,
an extensive amount of theoretical work has been per-
formed in the past decade, following the pioneering work
of Onuki [4] and of Fredrickson [5]. Cates and co-
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workers [6] have considered in particular self-assembly sys-
tems under shear flow and demonstrated how the cou-
pling between the order parameter and the shear can
account for a shift in the critical transition control-
ling parameter (e.g., temperature, density, etc.). These
studies give a qualitative explanation for the observed
variety of shear induced transitions in surfactant and
diblock copolymer systems, for example, the shear in-
duced sponge (L3) to lamellar (Lα) transition [7].
More recent theoretical work concerns with the possi-
bility of two phase coexistence under shear flow [8,9],
which has been observed experimentally in worm-like mi-
cellar systems [9]. However, when the shear induced state
is not related to an existing equilibrium phase [10], the
reason for its appearance is less clear and should probably
be based on a specific instability mechanism [11]. While
this viewpoint is somewhat discouraging since it prevents
the formulation of a general theory, it may explain why a
large variety of states – much more than those existing in
equilibrium – are often obtained under shear.

In equilibrium, surfactants in solutions self-assemble in
a variety of building block structures, one of which is a bi-
layer membrane [2]. In the lamellar phase [12], which has
the symmetry of smectic-A liquid crystals, the membranes
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are arranged in a periodic stack with repeat distance d.
The equilibrium properties of dilute lamellar phases of un-
charged, semi-flexible, membranes, are well understood.
A key quantity is the so-called Helfrich-Servuss patch
size ξ‖, the distance between consecutive intermembrane
collisions. It is related to the single membrane bending
modulus κ and to the interlayer spacing d according to
ξ‖ ∼ (κ/kBT )1/2d (κ ∼ 1−5 kBT for typical systems). On
lateral lengthscales shorter than ξ‖ the membrane behave
as if it was isolated. On lateral lengthscales much longer
than ξ‖, the membrane collides with neighboring mem-
branes, giving rise to an effective entropic repulsion. The
collective membrane fluctuations at such long wavelengths
are well described by the usual smectic-A elasticity [13], in
which both bending and compression moduli are related
to the single membrane bending modulus.

Much less is understood about the non-Newtonian be-
havior of these lamellar phases under shear. In the exper-
iments performed by Roux and co-workers [10,14–17] it
has been found that under relatively low shear rates (typi-
cally ∼ 1 s−1 for most systems) lamellar phases transform
into a “phase” of spherulites, i.e., multilamellar, onion-
like, vesicles. The local order of this phase is thus lamellar,
but not anymore the long range order. A detailed “ori-
entation phase diagram” has been obtained, showing the
variation of the critical shear rate γ̇∗ for the formation
of onions as the interlayer distance d is changing. The
onion phase transforms back into a well ordered lamel-
lar phase at a higher critical shear rate, which we do not
discuss here. The phase diagram appears essentially uni-
versal, with small quantitative changes from one system
to another. Recent experiments show that onions are also
formed in lamellar-colloidal mixtures, in which case they
encapsulate the colloidal particles [18].

The mechanism of onion formation remains however
unclear to a large extent. Roux and co-workers have con-
jectured [10] that the transition to onions is triggered
by a buckling (or undulation) instability. This occurs, as
they suggest on the basis of theoretical work of Oswald,
Kleman and coworkers [19], because in the experiment the
gap between the two sliding surface is not uniform. In equi-
librium this spatial variation in the gap is accommodated
by the existence of dislocations which permit a change in
the local number of layers. These dislocations are able to
move with the mean flow at sufficiently low shear rates.
However, when the shear rate is too high the dislocations
cannot follow the flow [19] and this gives rise to an effec-
tive dilative (or compressive) strain perpendicular to the
layers. This dilatation is then suggested to trigger the well
known undulation (buckling) instability [13,20], which is
also found in controlled dilatation experiments (in the ab-
sence of flow). Since the buckling pattern cannot easily
flow, it may not sustain a large shear, and so its evolution
into an onion state is quite natural; no quantitative crite-
rion for this transition has been offered however by Roux
and co-workers.

While this idea that a buckling instability triggers the
formation of onions is very appealing, the mechanism that
has been suggested for its appearance in the first place is

not universal, even if plausible. In particular, it implies
that some of the transition characteristics may vary from
one apparatus to another, and possibly even under dif-
ferent sample preparations giving rise to different type
of defects. It is therefore interesting to explore also the
possibility that a lamellar phase will buckle under shear
even at uniform gap conditions. In this paper we present
a novel mechanism for such an instability that is inherent
to lyotropic lamellar phases. Our mechanism involves the
coupling of the short wavelength membrane undulations
to the flow. These short wavelength undulations are those
responsible for the (so-called) membrane excess area, and
we argue that these undulations are suppressed by the
flow [21]. Indirect observations for such an effect have been
recently reported [22]. It should be noted that this cou-
pling is very weak at the shear rates of interest. However,
it is sufficient to promote transmission of membrane area
from “excess” to “projected”. The shear effect is intro-
duced as an effective lateral pressure in the coarse grained
lamellar free-energy, which induces buckling of the whole
phase above a certain critical value. We show that our
free-energy is, in fact, isomorphic to the elastic free-energy
change under dilatation, with the effective pressure acting
as the dilatation parameter. We also provide a criterion
for the formation of onions from the buckling array. This
allows us to predict, with the help of the asymptotic re-
sults for the buckling wavelength and amplitude, the crit-
ical shear rate for onion formation. Interestingly, our ap-
proach bears some similarity to the study of Williams and
MacKintosh [23] of diblock copolymer smectic-A phase
under shear. Here, it was suggested that the shear tilts
(and thus stretches) the polymers, which causes the layer
thickness to diminish giving rise to an effective dilatation.

The undulation (or buckling) instability of smectic-A
phases under dilatation or external field is a well known
phenomena [13,24,25]. From the theoretical viewpoint the
main approach has been a linear stability analysis of the
elastic Landau-de-Gennes free-energy. Other works [26]
have shown that if topological transformations are al-
lowed, focal conic domains prevail at a slightly larger di-
latation than the critical one. More recently, non-linear
analysis of the buckling profile has been performed by
Singer for large dilatation [20], keeping, in contrast, a fixed
topology (i.e., not allowing the formation of focal conics).
This is relevant to situations where the energy barrier to
obtain focal conics is too high so that the transition is
kinetically suppressed. Analytical results for the buckling
amplitude and wavelength have not been obtained how-
ever. Our non-linear analysis stems from the calculation
of Singer and allows us to find asymptotic expressions for
the buckling wavelength and amplitude at small and large
shear rates (effective pressures). The dynamics of the un-
dulation instability has also been recently addressed [27].
This issue will not be considered here, because the undula-
tion instability is expected to evolve much faster than the
subsequent transition to onions, so that an “equilibrium”
analysis of the instability is useful.

Our paper is constructed as follows. In Section 2 we
discuss the coupling of the short wavelength membrane
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Fig. 1. A lamellar phase held in a parallel plate shear cell
(schematic illustration). The small number of layers is not
realistic.

thermal undulations with the shear flow and describe how
the effect of shear flow can be replaced by an effective
lateral pressure. Combining this pressure with the lamel-
lar elastic free-energy, we construct in Section 3 a virtual
free-energy for an oriented lamellar phase under shear. In
Section 4.1 we repeat the familiar linear analysis of this
free-energy showing the onset of a buckling (undulation)
instability. Our results are extended in Section 4.2 beyond
the linear analysis by obtaining an exact integral expres-
sion for the minimum free-energy. The latter is analyzed
analytically both in the small shear rate (or dilatation)
and large shear rate regimes, to obtain the preferred wave-
length of the instability as a function of shear rate. In Sec-
tion 4.3 we compare the stability of the square lattice and
stripe modulations. In Section 5 we then derive a criterion
for the stability limit of the buckling modulation itself due
to its coupling with the flow, above which it is unstable.
Assuming that at this limit of stability it breakups into
onions, we compare our predictions to existing experimen-
tal data. We discuss our main assumptions and conclude
in Sections 6, 7.

2 A single membrane under shear flow

2.1 Microscopic picture – general considerations

We consider an ideal rheometer composed of two parallel
smooth walls (even though many of the actual experiments
have been done in a couette cell). A lamellar phase is sand-
wiched in the gap and the top wall is moved at a constant
velocity, making a constant shear rate (velocity gradient),
see Figure 1. We assume that the lamellar planes become
oriented parallel to the walls (“c” orientation), as usually
found in experiment [10]. We denote by z the axis per-
pendicular to the walls (the ∇v direction), y be the axis
parallel to the flow (v direction) and x be perpendicular
to both.

We assume a perfect lamellar order, i.e., that no de-
fects are present. For simplicity, we also freeze in all long
wavelength (λ� ξ‖) thermal fluctuations of the lamellar.
These can be added in a more refined calculation. We shall
thus focus on the interaction with the shear flow of the
short wavelength undulations (λ . ξ‖), which are those re-
sponsible for the membrane “roughness” and excess area.

Fig. 2. A single membrane undulation mode, h(x) =
hqsin (qx) (dashed line), which is perturbed by the shear flow
(solid line). The extent of the deformation δx is determined by
a force balance, see Section 2.

At zero shear, neighboring membranes collide with one
another with mean distance ξ‖ between consecutive colli-
sions. These short wavelength undulations interfere with
the shear flow. As a result of this coupling, the macro-
scopic viscosity ηe is increased above the solvent viscosity
ηs [28,29]. But at the same time this coupling should also
suppress the thermal undulations [21] so as to diminish the
macroscopic viscosity and the resulting energy dissipation
in the system.

Our focus here will be on low shear rates correspond-
ing to small Deborah numbers associated with single mem-
brane undulations De = γ̇τξ‖ � 1 [11], where τξ‖ is the
undulation relaxation time of a membrane patch of size ξ‖,
τξ‖ = ηξ3

‖/κ (η is the solvent viscosity and κ is the bend-
ing modulus). Hence the flow is only weakly perturbing
these short wavelength modes.

Consider a single displacement mode, h(x) =
hqsin (qx), qξ‖ � 1. Under steady shear flow, this mode
is perturbed (deformed) and the maxima/minima posi-
tions are shifted by ±δx, see Figure 2. The magnitude
of δx is determined from the mechanical equilibrium in
the x-direction, i.e., from the balance of the shear force
with the membrane elastic forces. In the non-perturbed
state, the bending energy (per unit area) is Eo ' 1

2κq
4h2
q.

For the perturbed state we write E = Eo + δE(δx).
Now, without considering the details of the shear force
(which are associated with the shape of sine wave), the
shear force is fη ∝ ηγ̇. The membrane elastic restoring
force is fκ = −∂(δE)/∂(δx). Equating −fκ = fη we find
δx = δx(γ̇) and so δE = δE[δx(γ̇)]. This implies that the
restoring force for the mode amplitude hq (per unit area)
in the z direction is

fz = −κq4hq −
∂δE

∂hq
· (1)

The second term in equation (1) shows the increase of this
force relative to the non-perturbed case. (This is analo-
gous to shearing an initially relaxed spring standing par-
allel to the z-direction). Now we can view the perturbed
modes as the eigenstates of an Hamiltonian that includes
both the bending energy and the shear force potential. If
δE = 1

2δEoh
2
q, and if solvent molecule collisions with the

membrane are unaffected by the shear flow, we can give,
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by equipartition theorem, an energy 1
2kBT for each per-

turbed state. The mean square amplitude of hq in such a
steady state is then given by〈

h2
q

〉
' kBT

κq4 + δEo(γ̇)
· (2)

The same result is derived from a Langevin equation for
hq(t) which includes the modified force equation (1) and
a white noise force whose correlation function is not mod-
ified by the flow (by assumption).

2.2 Approximate perturbation calculation

Let us find approximately δx for small perturbations (low
γ̇). For this we shall assume λ ' hq (i.e., κ ' kBT ). The
shear force per unit area can be estimated in this case to
be fη ' q2ηγ̇h2

q. To find the elastic restoring force, the
perturbed mode (Fig. 2) is taken to be roughly composed
of half of a sign period of wavelength λ′ = λ + 4δx, and
half of a sign period of wavelength λ′′ = λ − 4δx, where
δx � λ is assumed, λ = 2π/q. Accordingly the energy of
the perturbed mode is estimated to be E = Eo + δE with

δE ' 12
π2
κq4h2

q(qδx)2 (3)

which leads to fκ ' − 24
π2 κq

6h2
qδx. Equating −fκ = fη

we find

δx ' π2

24
ηγ̇

κq4
(4)

and the mean square amplitude under shear is therefore〈
h2
q

〉
' kBT

κq4 + π2

24
η2γ̇2

κq2

· (5)

The second term in the denominator in equation (5) is of
course assumed small compared to the first (De� 1).

Equation (5) is essentially the “Maxwell effect” [30]
for the single membrane undulations. Indirect experimen-
tal evidence for this effect appears in the X-ray diffraction
measurements of a lamellar phase under shear carried out
by Yamamoto and Tanaka [22]. They observed broadening
of the lamellar Bragg peaks which may be explained by
the reduction of the compression modulus. This implies
an increase of collision length ξ‖ which signifies the sup-
pression of thermal undulations. It is easy to show from
equation (5) that ξ‖ is indeed slightly increased by shear,
by calculating the new length for which 〈h2〉 = d2. Sim-
ilar discussions have been presented by Ramaswamy [21]
(who considered velocity gradients within the planes) and
by Bruinsma and Rabin [11].

2.3 Shear induced pressure/tension

In the absence of boundary walls, the projected area Ao is
free to adjust and so is the excess area ∆A = A−Ao. The
excess area is then decreased by shear and the projected

area is increased by the same amount, conserving the to-
tal membrane area. However, as will be argued later, we
should think of a membrane in the lamellar phase has hav-
ing confining walls which prevent from the projected area
to increase. In this case, assuming that at zero shear rate
the pressure vanishes, the membrane will exert a pressure
on the walls for any γ̇ > 0. We may compute this pressure
by introducing a Lagrange multiplier σ that couples to the
area and corresponds to a pressure Π = σ, thereby〈

h2
q

〉
' kBT

κq4 +
π2

24
η2γ̇2

κq2
− σq2

· (6)

The excess area can be then calculated according to

∆A

Ao
' 1

8π2

∫ π/a

π/ξ‖

d2qq2
〈
h2
q

〉
(7)

where ξ‖ ' (2π3)1/2
(

κ
kBT

)1/2

d. Demanding that the ex-
cess area is not changed under the combination of shear
flow and pressure, ∆A(γ̇, σ) = (∆A)eq, we find

σ ' π4

18
κd4

(kBT )2
η2γ̇2 · (8)

The pressure is thus quadratic in shear rate.
An equivalent approach is to consider first the supple-

ment to the projected area δAo in the absence of boundary
walls, using the fact that it is equal to the reduction in ex-
cess area. The latter is calculated using equations (5, 7)
to be

δAo

Ao
=
π4

72
η2γ̇2d6

(kBT )2
· (9)

This addition to the projected area can also be thought
as resulting from a balance between two opposing forces,
in which the membrane is considered initially in equilib-
rium: an external tension (i.e., an outward pressure) due
to the shear, which acts to increase the projected area,
and a restoring force associated with an increase of the
(shear-free) membrane free-energy. The Helmholtz free-
energy density (per unit area) for a membrane confined
between two parallel walls (in the absence of flow) has
been evaluated in reference [11] for small deviations of the
area ratio A/Ao from the equilibrium one (A/Ao)eq (see
also Appendix A) to be

fmem '
3π2(kBT )2

128κd2
+ ν

κ

d2

[
A

Ao
−
(
A

Ao

)
eq

]2

(10a)

where

ν =
9π2

2(1− 4/π2)
(10b)

and (
A

Ao

)
eq

' 1 +
kBT

4πκ
ln

[√
8
3

(
κ

kBT

)1/2
d

a

]
(10c)
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Fig. 3. Undulation instability of a lamellar phase according
to equation (22), which describes a stripe modulation in the
x-axis (the amplitude is exaggerated large). The flow is as-
sumed to be in the y-direction, so that it does not deform the
structure.

where a denotes the membrane thickness. The first term in
equation (10a) is the familiar Helfrich repulsion associated
with the entropy cost of confining the membrane. The sec-
ond term shows that the membrane responds to changes
in its projected area like a spring. The free-energy penalty
δfmem when the projected area Ao is perturbed (at con-
stant area A) near its equilibrium value, Ao = A

(eq)
o +δAo,

is then

δfmem ' ν
κ

d2

(
A

Ao

)2

eq

(
δAo

Ao

)2

. (11)

Under external tension σ(γ̇) the Gibbs free-energy vari-
ation is given by δGγ̇ = −σδAo + Aoδfmem. The new
projected area is then found by minimizing δGγ̇ with re-
spect to δAo. Here we use this procedure to deduce σ
making use of equation (9) for δAo. The result (taking
(A/Ao)eq ' 1) is

σ ' π6

8(1− 4/π2)
κd4

(kBT )2
η2γ̇2. (12)

Note that the difference in the results (12) and (8) is only
in the numerical prefactor. While we cannot judge which
of the two results is more accurate, consistency with our
calculation for buckling of the lamellar phase given below
requires that we use equation (12).

3 Lamellar phase elastic response to shear

We have seen that the effect of the shear flow on each
individual membrane is to increase (at constant A) the
projected area over its zero shear value, so as to decrease
the excess area ∆A = A−Ao. If there are boundary walls
which prevents the increase of projected area, there is a
lateral pressure exerted at the walls equation (8). There-
fore, under a large enough pressure the whole lamellar
phase may buckle coherently (see Fig. 3). This buckling
will involve an elastic energy penalty which we will con-
sider in this section. It is similar to the buckling of a plate

under compression. A perhaps better analogy is that of
a plate – confined by walls at its circumference – which
attempts to undergo, say, a longitudinal thermal expan-
sion, which may then lead to its buckling. (The difference
between these two analogies is however only semantic; for
given final temperature and projected area, the final buck-
ling state is the same no matter which of the two routes
is considered).

In order to proceed we distinguish between two type of
projected areas (Fig. 3): (i) the geometric projected area
(Ao,geom in Fig. 3), which we define as the projected area
associated with membrane wrinkles at all length scales
(be it thermal undulations, buckling, etc.), and (ii) the
physical projected area Ao, which we define as the one re-
sulting only from the short wavelength roughness, λ . ξ‖.
In the lamellar phase the geometric projected area is the
one which is (usually) fixed by the physical dimensions of
the system, accounted for by our fictitious boundary walls.
For example, in a couette cell each membrane has a fixed
geometric projected area (i.e., the area of a cylinder) if its
mean cylindric radius (the radius from the axis of sym-
metry of the cell) is not allowed to change. The mean ra-
dius may change only by allowing the solvent to permeate
through the membranes. However, this relaxation chan-
nel will usually be very slow compared to other relaxation
channels, so it may be ignored [31]. On the other hand,
the physical projected area may increase by buckling.

It is thus perhaps more appropriate to speak about a
shear induced tension which couples to the physical pro-
jected area (and works to increase it), rather than a pres-
sure which would couple instead to the geometric area
(and would work to decrease it). This tension may be
also thought of as an effective chemical potential for the
projected area. The term “tension” will be therefore used
henceforth throughout the paper, even though the reason
for using this term, and not a “pressure”, is mainly se-
mantic. (This difference is similar to the one between the
two analogies of plate buckling given above).

The model of a single membrane “sandwiched” be-
tween two parallel walls is a convenient tool to manifest
the difference between the two projected areas, physical
and geometric. When the walls are flat (and parallel to
each other), both projected areas are identical and are
simply the area of projection on one of the walls (or on the
middle surface). Suppose now that the two walls buckle si-
nusoidally in a coherent fashion, and that the wavelength
of buckling is much greater than ξ‖. According to our def-
initions the area of projection on one of the walls remains
the physical projected area. The area of projection onto
the planar surface is our geometric projected area. This
distinction is possible because of the separation of length-
scales between the short wavelength roughness and the
long wavelength buckling. We can distinguish similarly be-
tween the physical and geometric excess areas.

Consider first a hypothetical lamellar domain whose
boundaries are free to expand into a pure solvent re-
gion. Here the new, steady shear, projected area, is given
by equation (9). As discussed above, if the geometric
projected area is fixed, the physical projected area has
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to buckle in order to increase (Fig. 3). The single mem-
brane free-energy cost (Eq. (11)) against the increase of
projected area is associated with simple dilatation parallel
to the membrane mean planes. When the lamellar buckles
(on a long wavelength scale, λ � ξ‖), there are also Hel-
frich bending energy and compression energy costs. The
first is resulting from the bending of each layer. The second
is associated with local changes in the interlayer spacing
d → d + δd. These produce an energy variation resulting
from the first term in equation (10a) (which produces a
penalty for negative δd), and also from changing the equi-
librium value of the area ratio according to equation (10c),
which leads to an energy cost (for both positive and nega-
tive δd) resulting from the second term in equation (10a).
Using the usual smectic displacement field U(r), we have,
according to simple differential geometry,

δd ' d
(
∂U

∂z
− 1

2
(∇⊥U)2

)
. (13)

This leads to a generalized Landau-de-Gennes free-energy
for long wavelength deformations of the lamellar

Flam =
∫

d3r

[
1
2
K
(
∇2
⊥U
)2

+
1
2
B̃

(
∂U

∂z
− 1

2
(∇⊥U)2

)2

+ ν
κ

d3

(
A

Ao

)2

eq

∆(r)2

+
ν

2π
kBT

d3

(
A

Ao

)
eq

∆(r)
(
∂U

∂z
− 1

2
(∇⊥U)2

)]
(14a)

with

∆(r) =
δAo

Ao
(14b)

denoting the coarse-grained local change in the physical
projected area Ao. In equation (14a), the first term repre-
sents the Helfrich cost for bending the layers with bending
elastic modulus K, while the second term is the compres-
sion energy cost for allowing the interlayer distance to
change, with B̃ denoting the compression modulus. These
are related to the single layer bending modulus κ and the
interlayer distance d by

K = κ/d (15a)

and

B̃ = B̄ +
ν

16π2

(kBT )2

κd3
=
(

9π2

64
+

ν

16π2

)
(kBT )2

κd3
·

(15b)

The third tern in equation (14a) is identical to equa-
tion (11) and represent the cost of stretching or compress-
ing the physical projected area. The last term represents
a coupling between local stretching and displacement.

In equation (15b) B̄ is the familiar compression mod-
ulus at constant chemical potential (c.f., Eq. (B.4), Ap-
pendix B). Recall that constant chemical potential cor-
responds to the second term in equation (10a) being a

constant (which can thus be omitted). If we would now
introduce a variation of the interlayer spacing in the re-
maining first (Helfrich repulsion) term in equation (10a),
this will lead to the familiar free-energy at constant chem-
ical potential equation (B.4), which appears like the first
two terms in equation (14a) but with B̄ replacing B̃. Like-
wise, minimizing equation (14a) over ∆(r) also leads to
the same (constant chemical potential) free-energy, equa-
tion (B.4).

We note in passing that a more familiar free-energy,
that includes the local surfactant (membrane) concentra-
tion as the extra variable (instead of ∆(r)), can be de-
rived from equation (10) [11,32], see Appendix B. How-
ever, equation (14) is a more appropriate starting point
for our purposes. First, as argued above, the shear cou-
ples directly to the physical projected area (and not to
the concentration) through the induced tension. Second,
equation (14) allows us to consider free-energy changes at
constant membrane area A, which we believe to be the
appropriate constraint for our problem (see below).

Given the lamellar elastic free-energy that is opposing
a virtual change in the local (physical) projected area, we
may construct the total (virtual) Gibbs-like free-energy, in
which the shear flow is represented by an external ten-
sion which couples to the physical projected area (see
Sect. 2.3),

Gγ̇ = −σ
d

∫
d3r∆(r) + Flam. (16)

Note that although equation (16) (with Eq. (14)) is rota-
tionally invariant for arbitrarily large rotations, the term
in σ was constructed only for a lamellar which is nearly
in “c” orientation (i.e., layer normals orient parallel to
the velocity gradient direction), and it does not describe
correctly large deviations from this orientation; true ro-
tational invariance is absent for γ̇ > 0 but this is not
described by this equation.

The procedure for determining the relation between
∆(r) and U(r) under shear depends on physical assump-
tions. It could be argued that equation (16) should be
minimized over ∆(r). If so we obtain

∆(r) = −kBT

4πκ

(
∂U

∂z
− 1

2
(∇⊥U)2

)
+
σd2

2νκ
(17)

which leads to

Gnc =
∫

d3r

[
−kBTσ

8πκd
(∇⊥U)2

+
1
2
K
(
∇2
⊥U
)2

+
1
2
B̄

(
∂U

∂z
− 1

2
(∇⊥U)2

)2
]
. (18)

(We have set (A/Ao)eq = 1 for simplicity and used the
boundary conditions U(0) = U(D) = 0, which break
the rotational invariance.) The first, destabilizing, term
in equation (18) can lead to an undulation (buckling) in-
stability – similar in some respect to the one discussed
in Section 4 – which originates from the fact that the local
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interlayer spacing is forced to follow a smaller excess area
according to the equilibrium condition (cf., Eq. (10c)).
However, this procedure does not conserve the total mem-
brane area (including the short wavelength roughness) in
each layer. We believe that this is not appropriate for
the experiments we discuss. For if surfactant exchange
between each layer and a “reservoir” (of constant chem-
ical potential) could take place within the experimental
timescale (e.g., several minutes), the system would pre-
fer to nucleate another membrane layer – in order to de-
crease d – rather than to buckle at constant number of
layers. Therefore we shall assume henceforth that, in the
non-equilibrium transitions we consider, the total mem-
brane area in each layer (and the number of layers) cannot
change during shear, and we will not use equation (18).
For experiments where membrane area can change (but
the number of layers cannot), equation (18) could be a
useful starting point. We shall examine the implications
of equation (18) briefly in Section 4.4.

Keeping now constant the total membrane area and
the geometric projected area in each layer, can be trans-
lated to the following constraint on the (total) change in
the physical projected area [33]∫

d2x∆(r) '
∫

d2x
1
2

(∇⊥U(r))2
. (19)

(The integrals in Eq. (19) are over the geometric projected
area). For simplicity, we shall avoid here the minimization
of Gγ̇ over {∆(r)} subject to the constraint equation (19),
and instead replace this global constraint by a local one

∆(r) ' 1
2

(∇⊥U(r))2 (20)

which of course agrees with the global constraint. (This
turns out to be a very good approximation to the full
minimization; the final results are almost identical in both
procedures). We thus obtain Gγ̇ as a functional of {U(r)}
alone

Gγ̇ =
∫

d3r

[
−1

2
σ

d
(∇⊥U)2 +

1
2
K
(
∇2
⊥U
)2

+
1
2
B̃

(
∂U

∂z

)2

+
1
8
Be (∇⊥U)4

− 1
2
Cu

∂U

∂z
(∇⊥U)2

]
(21a)

where

Be ' B̃ + 2ν
κ

d3

(
A

Ao

)2

eq

− ν

π

kBT

d3

(
A

Ao

)
eq

(21b)

Cu = B̃ +
ν

2π
kBT

d3

(
A

Ao

)
eq

. (21c)

Note that the term proportional to σ is negative, show-
ing that it acts to increase the physical projected area (at
constant geometric projected area). That a lamellar phase

under shear flow is fully described by this effective ther-
modynamic potential is clearly an assumption, but it has
the advantage that the problem is now reduced to a free-
energy minimization. Next we apply this model to study
the possibility of buckling of a lamellar phase under shear.

4 Buckling instability

4.1 Linear profile analysis

As for the case of a “plate” under compression, we may
expect that above a critical value of σ the lamellar phase
will buckle. Near this transition (which is yet to be found)
we may assume a single mode buckling modulation [13].
Let us first consider a stripe modulation along (say) the
x-axis (Fig. 3). This will be compared later to a square
lattice modulation. We shall also take only the first har-
monic of the z dependent amplitude which should satisfy
vanishing boundary conditions at the top and bottom sur-
faces. Thus

U(r) = Uosin
( π
D
z
)

cos (qx). (22)

Here it is assumed that q is independent of z. This is not
entirely correct. In fact, for very small buckling ampli-
tudes where Uo � d each layer may buckle at a slightly
different q. However, as soon as Uo ∼ d neighboring layers
with different wavelength modulations will cut each other,
which is obviously not permissible. Therefore we may ex-
pect that the repulsion between layers (i.e., the compres-
sion energy) will drive the system to buckle with all layers
having the same wavelength. Our purpose is then to find
this wavelength self-consistently with the assumption that
it is independent of z.

Using equation (22) in equation (21a) and perform-
ing the 3-D integration, we obtain the free-energy density
g̃γ̇ = Gγ̇/V (V = LxLyD is the volume) as

g̃γ̇ =
1
8

[
Kq4 + B̃

π2

D2
− σ

d
q2

]
U2

o +
9

512
Beq

4U4
o . (23)

Note again that the term in σ is negative, even though
it couples to ∼ q2U2

o . From our standpoint the latter ex-
pression simply accounts for the change in the physical
projected area.

Buckling occurs when the square brackets in equa-
tion (23) first become negative. To find the characteris-
tics of this buckling transition we need to minimize equa-
tion (23) over q and Uo. We shall use the complete expres-
sion in equation (23), and not only the U2

o term, since the
coefficient of U4

o depends on q and we shall be interested
in the preferred value of q also away from the transition.
The critical “tension” is found to be

σc = 2π
√
KB̃

d

D
' 8.57

kBT

Dd
· (24)

This corresponds to a critical shear rate

γ̇c ' 0.2
(kBT )3/2

ηκ1/2d5/2D1/2
· (25)
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The preferred wavenumber is

qco =
( π
D

)1/2
(
B̃

K

)1/4

' 2.07
(
kBT

κdD

)1/2

. (26)

In equations (24, 26) the second equality holds for lamellar
phases stabilized by the Helfrich undulation forces, equa-
tions (15a, 15b). The reason for a finite qco is the cost of
compression energy. Without it (i.e., when B̃ = 0) the
preferred value of q would have been zero (or π/Lx, the
low cutoff). Interestingly, qco becomes exactly the critical
wavenumber obtained for the more familiar undulation
instability under dilatation in the z-direction [13] (i.e.,
dilatation perpendicular to the layers), if we replace B̃
by B̄. This is not too surprising since the U2

o term in
equation (23) becomes identical in this case to the one
appearing for dilatation if we also set σ/d = B̄γz where
γz = δD/D is the strain. Because of the q4 dependence
of the U4

o term, this wavenumber is found to be the one
preferred even away from the transition. This result will
be modified when we apply next non-linear analysis.

To complete the linear analysis, the buckling ampli-
tude is found (from minimization over Uo) to obey the
relation

Uoqco =
4
√

2
3

√
σ − σc

Bed
· (27)

Note that Uo ∼
√
σ − σc, as expected for a “mean-field”

type model.

4.2 Non-linear profile analysis

While in the previous section we attempted to analyze
the undulation instability even away from the threshold
(by including the U4

o term), the sine profile considered is
accurate only in the critical sense, and the use of such
an ansatz for non-critical systems is not justified. We thus
consider now the undulation instability far from criticality
in a more consistent way [20]. We focus on the z-dependent
amplitude and its deviation from a pure sine function; we
are not concerned here about the evolution of the geomet-
rical structure itself beyond the single harmonic modula-
tion. Instead of equation (22) we thus use

U(r) = u(z)cos (qx) (28)

where u(z) will be found by free-energy minimization.
Substituting into equation (21a) we obtain

gγ̇ ≡
Gγ̇
LxLy

=
∫ D

0

dz

[
−1

2
au(z)2 +

1
4
bu(z)4 +

1
4
B̃

(
∂u

∂z

)2
]

(29a)

where we have set

a(q) =
1
2

(σ
d
q2 −Kq4

)
(29b)

and

b(q) =
3
16
Beq

4. (29c)

Equation (29a) resembles the familiar 1-D Landau-
Ginzburg free-energy, and we may use the available knowl-
edge for this well studied model. First, we note that for
the pure bulk behavior we may set ∂u/∂z = 0 and equa-
tion (29a) becomes the usual Landau free-energy. Its min-
imum is obtained for u =

√
a/b. We may therefore expect

that for very large D, or for σ much above the threshold,
equation (29a) with ∂u/∂z = 0 will describe most of the
interior of the slab. To understand how the amplitude de-
cays to zero on approaching the walls, we first recall the
case of a semi-infinite bulk region (z ≥ 0). The Euler-
Lagrange equations corresponding to equation (29a) are

1
2
B̃
∂2

∂z2
u = −au+ bu3 (30)

with the boundary conditions u(0) = 0 (due to the pres-
ence of a flat wall) and ∂u/∂z|z→∞ = 0. (Note that if the
u3 term is neglected, the solution to this differential equa-
tion for our slab problem u(0) = u(D) = 0 is a pure sine,
consistent with equation (22).) To solve equation (30), we
multiply it by u and integrate once to obtain

1
4
B̃

(
∂u

∂z

)2

= −1
2
au(z)2 +

1
4
bu(z)4 +

a2

4b
(31)

where the constant of integration a2/4b was found by us-
ing the boundary conditions ∂u/∂z|z→∞ = 0 and u(∞) =√
a/b. This allows us to write the right hand side of equa-

tion (31) as a complete square 1
4b
(
u2 − a/b

)2, which in
turn enables to integrate a second time to give

u(z) =
√
a

b
tanh

(
z

ξ

)
. (32a)

Here we have defined the correlation length

ξ =

√
B̃

a
· (32b)

Equation (32) is a well known result for this boundary
value problem [3,1]. It allows us to quantify the criterion
for validity of the linear stability discussed in Section 2. If
ξ & D the linear analysis is accurate; it breaks down when
ξ � D. As can be seen ξ diverges at the (bulk) buckling
transition (a → 0). At finite gap conditions its critical
value is ξ = D/π, which means that the linear analysis
should be accurate close to the transition, as expected.
Equation (32) should be reasonably accurate, on the other
hand, when D � ξ, for z in the range 0 < z < D/2. (For
z in the range D/2 < z < D the result is obtained by
replacing z by D − z.)

Let us estimate ξ when σ is not critical but still on
the order of σc. Than a ∼ σcq

2
c/d ∼ (kBT )2/(κd3D2) so

that ξ ∼ D. Hence the sine, linear analysis, form, for u(z),



A.G. Zilman and R. Granek: Lamellar undulation instability and onions induced by shear 601

introduced in equation (22), should be marginally correct
even outside true criticality. However, we now want to find
more accurately how the preferred wavenumber qc evolves
away from its critical value qco when σ is varied away
from the transition, σ > σc. Note that the value of q that
minimizes the bulk free-energy (Eq. (29) with ∂u/∂z = 0)
is vanishing, i.e., qc obtains its low cutoff value π/Lx,
and so does the critical tension, σc ∼ κ/L2

x. Yet, buckling
cannot not occur at such small tensions since this is not
self-consistent with the assumption ξ � D. Rather we
have ξ ∼ L2

x/d � D, which implies that qc obtains a
different value.

The method described below, which is commonly used
in Landau-Ginzburg type boundary value problems (e.g.,
for polymer adsorption on surfaces), allows us to find qc
without reference to a particular (non-harmonic) shape of
the amplitude profile u(z). Let us denote by Uo the value of
u(z) at the middle plane, z = D/2, which is therefore also
the maximum value that u(z) obtains in the whole slab.
From the requirements of (i) symmetry of u(z) around
the middle plane and (ii) analyticity of u(z) at the middle
plane, we must have ∂u/∂z|D/2 = 0. Equation (31) is then
replaced by

1
4
B̃

(
∂u

∂z

)2

= −1
2
a
(
u(z)2 − U2

o

)
+

1
4
b
(
u(z)4 − U4

o

)
. (33)

Using this relation to eliminate ∂u/∂z in equation (29) we
obtain

gγ̇ =
(

1
2
aU2

o −
1
4
bU4

o

)
D

+
∫ D

0

dz
[
−au(z)2 +

1
2
bu(z)4

]
. (34)

Transforming the integral over z to an integral over u,
using again equation (33), we obtain, after some manipu-
lations, a general integral expression for the free energy

gγ̇ =
(

1
2
aU2

o −
1
4
bU4

o

)
D

+ 2

√
B̃

b

∫ Uo

0

du
−au2 + 1

2bu
4√

(2a/b− U2
o − u2)(U2

o − u2)
· (35)

The “constant of integration” Uo is determined uniquely
from the following identity

D=2
∫ D/2

0

dz=2

√
B̃

b

∫ Uo

0

du√
(2a/b−U2

o−u2)(U2
o−u2)

(36)

(in contrast to the direct minimization over Uo in the lin-
ear analysis). The integrals in equations (35, 36) can be
expressed in terms of known elliptic integral functions [20];
see Appendix C. However, they cannot be calculated ana-
lytically. We shall therefore obtain explicit results only for

Fig. 4. Preferred wavenumber qc, reduced by its value qco at
σ = σc, against the reduced tension σ/σc.

two regimes: (i) ξ ∼ D which will correspond to σ ∼ σc

and (ii) ξ � D which will correspond to σ � σc.
Consider first ξ ∼ D. Here we expect Uo �

√
a/b. Ex-

panding the integrands in equations (35, 36) appropriately
we obtain

gγ̇ '
(

1
2
Da− π

2
√

2

√
B̃a

)
U2

o

−

1
4
Db+

π

32
√

2

√
B̃

a
b

U4
o + o(U6

o ) (37)

and √
2a
B̃

D

π
' 1 +

3b
8a
U2

o + o(U4
o ). (38)

We may thus eliminate Uo from equation (37) using equa-
tion (38). In order to remain within the o(U6

o ) expansion,
we first substitute D as a function of Uo in equation (37)
and keep terms only up to U4

o (The term in U2
o is found

to cancel out identically). We then substitute back Uo as
a function of D. This leads to

gγ̇(q) ' −
√

2π
3

√
B̃
a3/2

b

(√
2a
B̃

D

π
− 1

)2

. (39)

Note that gγ̇ depends on q through a(q) and b(q), and may
be written as a function solely of q/qco and σ/σc.

As the last step we now minimize this free-energy over
q (to obtain the preferred value qc), subject to the con-
straint U2

o > 0 (i.e., the brackets in Eq. (39) have to be
positive). When σ − σc � σc, this free-energy is mini-
mum exactly at q = qco, equation (26). However, when
σ increases we find that qc increases too. This should be
contrasted with our linear stability result where qco re-
mains the preferred q for any σ. It turns out to be too
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difficult to obtain the exact analytic dependence of qc on
σ [34]. However, from equation (39) we find that qc/qco is
a function solely of σ/σc. In Figure 4 we plot this function
which is found numerically using, instead of equation (39),
a more accurate free-energy which includes terms up to
order U6

o . It is seen that when σ ∼ σc, qc is weakly depen-
dent on σ: qc/qco increases almost linearly with σ/σc with
a very small slope, roughly 0.1. For σ � σc (not shown
in Fig. 4), qc – determined from equation (39) – becomes
much larger than qco and approaches asymptotically the
value (σ/6Kd)1/2. However, using the latter value in equa-
tion (32b) we find that D/ξ ∼ σ/σc � 1 which means
that the small Uo approximation entirely breaks down in
this limit. Therefore, we conclude that in the regime of σ
where this approximation is valid, i.e. σ ∼ σc, qc remains
roughly equal the critical value qco, equation (26).

Next we consider the regime σ � σc which should
correspond to D� ξ. Here u(z) is expected to be roughly
constant inside the slab ξ � z � D − ξ, with u(z) '
Uo '

√
a/b, the bulk value. Using this value of Uo for the

integrands in equations (35, 36) (but not for the upper
integration limit) we obtain in this limit

gγ̇ '
(

1
2
aU2

o −
1
4
bU4

o

)
D

+

√
B̃

b

(
aUo −

1
3
bU3

o −
a3/2

√
b

arctanh

(√
b

a
Uo

))
(40)

and

D ' 2

√
B̃

a
arctanh

(√
b

a
Uo

)
. (41)

Equation (41) shows that indeed Uo →
√
a/b as D→∞,

as required. Using it to eliminate the “diverging” inverse
hyperbolic tangent from equation (40), and replacing the
remaining Uo by

√
a/b we find

gγ̇ ' −
a2

4b
D +

2
3

√
B̃a3/2

b
= −a

2

4b

(
D − 8

3
ξ

)
. (42)

(An equivalent derivation of Eq. (42) using elliptic inte-
gral expansions is presented in Appendix C). The second
equality in equation (42) shows that gγ̇ is simply the bulk
free-energy of a slab with an effective reduced size D− 8

3ξ.
This is because the direct contribution from the regions
near the walls scales as a2

b ξ. This can be seen from equa-
tion (29) by estimating ∂u

∂z ∼ Uo/ξ. Note that even though
D � ξ has been assumed, the linear term in ξ cannot be
neglected since, as discussed above, without it the mini-
mum is at q = 0 (or at q = π/Lx, the low cutoff), which
contradicts the assumption D � ξ. Minimizing now with
respect to q we obtain, within the self-consistent approxi-
mation that σ/d� Kq2 (consistent with the system being
far from criticality),

qc '
√

2
3

1
3

(B̃σ)1/6

d1/6(KD)1/3
· (43)

Equation (43) shows that when σ � σc, qc is substantially
increased from its critical value qco. As required for consis-
tency, in this limit we find ξ � D. Interestingly, equation
(43) coincides – to within a numerical prefactor – with the
expression for qco in the limit σ = σc. Together with our
results for the regime σ ∼ σc, this suggests that qc may
be described by a single scaling function of the argument
σ/σc in the whole σ regime, i.e. qc = qcof(σ/σc), where
f(1) = 1 and f(x) ∼ x1/6 for x� 1.

To end this analysis we calculate the amplitude Uo

for σ � σc. Using Uo =
√
a/b and σq2

c/d � Kq2
c we

immediately obtain

Uoqc '
√

8σ
3dBe

(44)

showing that Uoqc ∼ σ1/2. This result is in fact very simi-
lar to the linear analysis result equation (27), except that
here we have to use equation (43) for qc.

4.3 Square-lattice buckling

Let us now compare the free-energy of the stripe, 1-D,
buckling assumed so far to that of a 2-D, square lattice,
array. Thus we now use in equation (21a)

U(r) = u(z)cos (qx)cos (qy). (45)

After integration over x and y we obtain a free-energy
similar to equation (29a) with 1

4 B̃ replaced by 1
8 B̃ and

with

a(q) =
1
2

(σ
d
q2 − 2Kq4

)
(46a)

and

b(q) =
5
32
Beq

4. (46b)

Using u(z) = sin (πz/D) we find that the critical tension
σc is identical to that of a stripe buckling equation (24)
and the critical wavenumber is smaller than that of a
stripe buckling, equation (26), by a factor of 1/

√
2,

qco =
( π

2D

)1/2
(
B̃

K

)1/4

. (47)

Comparing b(qco) for the two type of lattices, we find that
it is smaller for a square lattice. As a result, the free-energy
of the square lattice buckling is smaller than that of the
stripe buckling. This suggests that if we can neglect the
coupling of the buckling modulation itself with the flow,
a square lattice buckling is preferred. (A more elaborate
consideration is given in Sect. 5).

Considering the other major predictions discussed
above for the stripe buckling, we find the following re-
sults for the square lattice buckling: (i) For σ ∼ σc we
have q ' qco equation (47), and Uo obeys an equation
similar to equation (27) with a prefactor 8/

√
15 replacing

4
√

2/3. (ii) For σ � σc, qc obeys an equation similar to
equation (43) with a prefactor 1/3

1
3 replacing

√
2/3

1
3 , and

Uo obeys an equation similar to equation (44) with 16/5
replacing 8/3 in the square root.
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Fig. 5. Deformation of the buckling structure by the flow
(schematic illustration). When the deformation is too strong
the structure may breakup into onions (Fig. 6).

4.4 Non-conserved membrane area

If the system is held at a constant chemical potential, we
need not conserve the total membrane material in each
layer. If we further assume that due to kinetic reasons
the total number of layers cannot change – even though
a constant chemical potential does allow such a change
– minimization over the local excess area ∆(r) leads to
the free-energy equation (18). The undulation instability
resulting from equation (18) is very similar to that found
above, even though its physical origin is quite different.
Whereas the undulation instability discussed previously
is equivalent to the case of a plate under compression,
in this case it is equivalent to a dilative strain in the
z-direction. The tension σ works to reduce the excess area,
and smaller excess area implies that, in an equilibrium-like
situation, the interlayer spacing be smaller. If the gap is
fixed, this becomes equivalent to a dilative strain.

The results for this case can be obtained simply by
making the following replacements in all of the previous
results

σ → kBT

4πκ
σ (48a)

B̃ → B̄ (48b)

Be → B̄. (48c)

The main effect of these changes is to increase the critical
tension (and thus the critical shear rate) of equation (24)
by a factor of 4πκ/kBT , which is usually of order 10. As we
discussed in Section 2, for shear experiments in a couette
cell [10] we believe that this discussion is not relevant;
however, it may be appropriate for other cases.

5 Transition to onions

As a last step we wish to connect our results with the
observed transition to spherulites, assuming that a square

Fig. 6. Formation of onions (schematic illustration). Note that
the small number of onions and number of layers (in each
onion) is not realistic.

lattice buckling has been selected. We can expect that at
some critical shear rate γ̇∗ the buckling structure will not
be stable any longer because of its resistance to the shear
flow (Fig. 5). Inspired by the experiments, we shall assume
that at this limit of stability the lamellar breaks up into
onions (Fig. 6), which can more easily flow by the well
known rolling mechanism. These onions should then have
an initial size close to the buckling wavelength λc(γ̇∗) (in
fact, λc/2).

We now make a concrete estimate for the transition to
onions. First we generalize the argument that was used by
Roux and co-workers to estimate the onion size, to find the
limit of stability of the buckling state. The shear force that
a buckling period experience under the flow is ∼ ηeγ̇Uoλc.
The elastic lamellar force which opposes this shear force
is ∼ κ/d. Balancing the two forces determines the critical
rate for onion formation. An equivalent estimate, which
leads to the same scaling result, follows from a closely
related discussion of Bruinsma and Rabin [11]. As a result
of the shear flow the buckling structure is deformed, see
Figure 5. The relaxation time of this deformation is just
the familiar undulation mode relaxation time [35]

τ−1
q =

κ

4ηd
q2
c . (49)

The buckling shape may be destroyed and (presumably)
transformed to onions if (say) the maxima are displaced
(by this deformation) to the same lateral (say x) position
of the neighboring minima. This occurs on a time scale

τ(γ̇) =
λc

4Uoγ̇
· (50)

Equating the two times we obtain an equation for the
critical shear rate for onion formation

γ̇∗ ' π

8
κq2

c

ηd
(Uoqc)−1 (51)

where U = Uo(γ̇∗) and qc = qc(γ̇∗). For γ̇ > γ̇∗, the
deformation does not have time to relax and onions are
created (Fig. 6).
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To obtain an explicit result, we have to solve equa-
tion (51) using the expressions obtained in the previous
section for qc and Uo as a function of the shear rate (effec-
tive tension σ). We will first use the (square lattice) results
for σ & σc (but far from criticality). This will give a lower
bound for γ̇∗. We thus use in equation (51) qc ' qco,
equation (47), and Uoqco ' 8√

15

√
σ/Bed. Using also

equations (15a, 15b) and (21b) for K, B̃, and Be, we ob-
tain the “lower bound”

γ̇∗1 ' C1[kBT/κ]
kBT

ηd5/2D1/2
(52a)

where

C1(X) ' 0.59
(
1 + 0.17 X + 0.014 X2

)1/4
(52b)

(e.g., C1(1) ' 0.62). Using our (square lattice) results
for σ � σc, namely qc ' (B̃σ)1/6/31/3d1/6(KD)1/3 and
Uoqc '

√
16σ/5dBe, we obtain an “upper bound” for γ̇∗

γ̇∗2 ' C2[kBT/κ]
kBT

ηd5/2D1/2
(53a)

where

C2(X) ' 0.73 X−1/4
(
1 + 0.17 X + 0.014 X2

)3/8
(53b)

(e.g., C2(1) ' 0.78).
The actual rate is predicted to lie in the interval

γ̇∗1 < γ̇∗ < γ̇∗2 , and its precise value can be found by a
numerical solution. It should be noted however that due
to the large uncertainty in the numerical factor in equa-
tion (51), this remains an academic exercise. Moreover, for
κ = kBT , γ̇∗1 and γ̇∗2 are only within 20% of each other and
we may therefore conclude that γ̇∗ ' 0.7 kBT/ηd

5/2D1/2.
Note that this has just the same scaling form as for γ̇c,
equation (25), and that γ̇∗ is only about three-four times
greater than γ̇c. The buckling state therefore exists in a
rather narrow regime of shear rates. The predicted onion
size at the transition, which we conjecture to be roughly
λc(γ̇∗), is thus close to λco = 2π/qco, equation (26).

Let us now compare our predictions with the exper-
imental results of Roux and co-workers. We focus on
the oil-rich (dodecane) system SDS/pentanol/dodecane/
water, with membrane volume fraction φ ' 0.30, stud-
ied experimentally in reference [16]. For this system D '
1 mm, d ' 100 A, η ' 3 mPa s (the dodecane vis-
cosity), and κ ' kBT . Using these parameters we get
γ̇c ' 103 Hz for the buckling transition critical shear rate
and γ̇∗ ' 3 × 103 Hz for the transition to onions. This
is roughly three orders of magnitude above the observed
critical rate for onion formation, γ̇∗ ∼ 1 Hz. On the other
hand, the effective exponent ζ in γ̇∗ ∼ d−ζ can be esti-
mated from the experimental data [17] to be ζ = 2.6±0.5,
which is in good agreement with the theoretical prediction
ζ = 2.5. (Of course, because of the apparently large exper-
imental error we cannot exclude the possibility that this
agreement is spurious.) The predicted onion size at the
transition is ∼ 10 µm, which is also roughly consistent
with the observed onion size.

Yet, how can we understand the huge deviation be-
tween the predicted and experimental values for γ̇∗? A
hint for the answer may be given by the very large mea-
sured viscosity of the lamellar phase (prior to the transi-
tion to onions) ηe ' 103 mPa s, which is ∼ 103 times the
solvent (dodecane) viscosity. As suggested by Roux and
co-workers, this is probably due to the presence of many
defects, e.g., dislocations. These defects resist the shear
flow and the shear rate must therefore locally vanish inside
the defect “cores”. Since there is a macroscopic shear rate
imposed on the system, local shear rates outside the de-
fects are larger than the imposed shear rate, which should
give rise to a larger effective viscosity. Some of these local
shear rates may be just as large as the predicted γ̇∗ so
as to induce the transition to onions. While we will not
really check this hypothesis here, it seems reasonable to
take such effects into account by using in equations (25,
52, 53) the measured viscosity ηe ' 103 mPa s, rather
than the solvent viscosity η ' 3 mPa s. This ansatz leads
to the estimate γ̇∗ ' 3 Hz, which is now comparable with
the experimental value γ̇∗ ∼ 1 Hz. It remains to explore
more carefully the role of defects in this phenomena. It
might also be useful to use different samples, with differ-
ent annealing degree, so that the measured viscosity will
vary from one sample to the other. If the ansatz is good,
one should find γ̇∗ ∼ 1/ηe.

6 Discussion

As discussed in Section 1, in our free-energy analysis we
have neglected the thermal fluctuations of the long wave-
length modes and ignored their interaction with the flow.
This has been taken into account in the elaborate study of
Bruinsma and Rabin [11] (which however did not consider
the effect we discuss). Thus the effects of shear flow dis-
cussed by Bruinsma and Rabin are not predicted by the
present theory. In addition, including the thermal fluc-
tuations of these modes, within a Brazovskii-Fredrickson-
Cates type theory [5,6], is expected to change the buckling
transition from being second order to (weakly) first or-
der, as well as to somewhat increase the critical shear rate
(tension) for the transition. Furthermore, even though the
free-energy analysis suggests that buckling to a square lat-
tice is preferred over a stripe lattice, the coupling of these
long wavelength unstable modes with the flow may actu-
ally prefer a stripe buckling in which the stripes are par-
allel to the flow. In the latter situation the buckling does
not obstruct the flow, unlike for the square-lattice buck-
ling. However, the flow of this type of stripe buckling does
involve substantial shearing of the 2-D membrane surface.
The two situations can therefore occur in principle, as well
as the case of a stripe buckling in which the stripes are
perpendicular to the flow. Predicting which one of these
three types of buckling will actually be selected must in-
clude the 2-dimensional flow of surfactant in the bilayers,
which is beyond the scope of this work.

We have conjectured that a buckled lamellar which is
deformed to the extent that neighboring minimum and
maximum are “sitting” one on top of the other, should
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breakup into onions. We may expect however that a lamel-
lar with “stronger” membranes will require a larger defor-
mation than a lamellar with “weak” membranes. We may
also expect that a highly buckled lamellar, that does not
break into onions, will have a much larger macroscopic
viscosity, because of the difficulty of the buckled state to
flow. Therefore, if onions are not formed at γ̇ = γ̇∗ as
discussed above, we may expect a sharp rise in stress (or
in effective viscosity) for a small rise of shear rate, result-
ing from a corresponding (small) rise of the product Uoq.
The transition to onions will eventually occur at a higher
shear rate. These ideas may explain some of the anoma-
lous stress vs. shear rate plots in which an apparent jump
in stress appears around the transition to onions [16]. We
suggest that this jump may still correspond to a buck-
led lamellar (and does not signify a transition to onions),
and that the actual transition to onions corresponds to
the subsequent observed decrease of the effective viscos-
ity. (This is quite different from the explanation given by
Roux et al. [16].) We are not able at this stage to be more
quantitative.

In obtaining our estimate for γ̇∗ we have used the value
of the amplitude in the middle of the gap (i.e. at z = D/2).
This is not entirely accurate since the rest of the system
has a smaller amplitude. In fact, what is required to gener-
ate just a single layer of onions (centered around z = D/2)
is that in a whole slab of width λc the amplitude be-
comes larger than the critical one required for formation of
onions. This means that Uo (i.e. the amplitude at the mid-
dle plane) has to be slightly larger than the estimate given
in equation (51). It is easy to see however that if (say) the
transition occurs at γ̇∗ ∼ γ̇c (where sine amplitude profile
applies), this modification only weakly perturb the result
for γ̇∗ since λc � D. If γ̇∗ � γ̇c, most of the system
will generate onions except the narrow slabs of size ξ near
the walls where the amplitude falls down rapidly. In an
intermediate situation (as discussed in Sect. 4), a slab of
some width between λc and D − 2ξ, centered at the mid-
dle, can produce the first generation of onions. Complete
transformation of the whole lamellar into an onion state
requires that the onion production is followed by repeated
phase separation of the onions from the remaining lamel-
lar phase.

7 Conclusions

In this paper we have shown that a lyotropic lamellar
phase is unstable against buckling at relatively low shear
rates. The instability is related to the coupling of the short
wavelength, single membrane, undulations, to the shear
flow. While this coupling is weak at the low shear rates
considered, the small suppression of these undulations by
the flow is enough to produce an increase of the mem-
brane projected area, which latter is forced to buckle in a
confined geometry.

An ansatz criterion has been used to determine the
buckling amplitude required for the breakup of the buck-
ling texture into an array of onions. When this ansatz
is combined with our analytical results for the buckling

amplitude and wavelength, we find satisfying agreement
with available experimental data provided that we use the
experimentally measured viscosity instead of the solvent
viscosity.

A non-trivial prediction resulting from the theory is
that the critical shear rate for the formation of onions is
inversely proportional to the square-root of the gap be-
tween the two sliding walls, γ̇∗ ∼ 1/

√
D. The larger this

gap is, the lower is the critical shear rate. At the same
time, the larger the gap, the larger are the onions gener-
ated near the transition. These predictions are yet to be
verified in experiment. They can be very important for
applications, e.g., for mass production of the onions.

Our theory fails to fully account for the existence of de-
fects. The role of defects may be more important than the
one envisaged by the present work, which has been only
to increase local shear rates (and, as a result, the effective
lamellar viscosity). However, we do predict an undulation
instability and formation of onions even in the absence
of defects, only that these transitions will occur at higher
(imposed) shear rates. This prediction can be checked by
annealing (at least partially) any defects existing in the
system before commencing the shear.

Our theory is different from most other existing ap-
proaches for complex fluids under shear in that it con-
siders a non-equilibrium instability. It is specific to dilute
lamellar phases. This suggests, on one hand, that it should
be hard to generalize the approach to other systems. On
the other hand, the theory shows how internal degrees of
freedom of the constituents, even when these only weakly
interact with the flow field, can make the whole system
become unstable because of their coupling to some other
degrees of freedom that are subject to some global con-
straints. This principle may be occurring in other systems
as well.
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Humanities, by the Ministry OF Science and The Arts, Israel,
and the French Ministry of Research and Technology, and by
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Appendix A: Thermodynamics of a single
membrane confined between two walls

Here we derive the Helmholtz free-energy of sin-
gle membrane confined between two walls sep-
arated by a gap d. This is used to model a
membrane in a lamellar stack. Equivalent deriva-
tions can be found in references [11,32,36],
but we rederive the main results here in order to
put them in the context of the present work.

We start by calculating the grand-canonical potential

Ω=−kBT lnΞ=−kBT ln
∫
Dh(x)
Λ

exp[−H({h(x)})/kBT ]

(A.1)
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where Λ is a phase space measure. The Hamiltonian is
assumed to be

H =
1
2
κ

∫
Ao

d2x(∇2h(x))2

+µ
∫
Ao

d2x

(
1 +

1
2

(∇h(x))2

)
+γ
∫
Ao

d2xh2(x). (A.2)

Here κ is the bending modulus, µ is the surface tension
(or chemical potential) Lagrange multiplier of the mem-
brane which couples to the total area A (i.e., to the total
number of molecules), γ is the Helfrich Lagrange multi-
plier which is coupled to the mean square undulation am-
plitude 〈h2〉, and Ao is the projected area. The two La-
grange multipliers will be determined from the constraints
∂Ω/∂σ = 〈A〉 = A and ∂Ω/∂γ = Ao〈h2〉 = Aoαd

2; here
α is a numerical constant which must be smaller than 1/4
since the maximum value of h is d/2. Following Bruinsma
and Rabin, it will be determined by consistency with the
more accurate calculation of Helfrich of the undulation
interaction potential. Transforming to Fourier space, the
partition function may be expressed as

Ω = −kBT ln
∫ ∏

q

dhqdh−q

a6
e
µAo
kBT

× exp

[
− 1

2kBTAo

∑
q

(
κq4 + µq2 + 2γ

)
hqh−q

]
. (A.3)

Performing the integrations, we find for the free-energy
density ω = Ω/Ao

ω = µ+
kBT

8π2

∫
d2qln

[
a6

2AokBT

(
κq4 + µq2 + 2γ

)]
.

(A.4)

The equation determining the Lagrange multiplier γ is

αd2 = 〈h2〉 =
∂ω

∂γ
=
kBT

4π2

∫
d2q

1
κq4 + µq2 + γ

· (A.5)

The equation determining the surface tension σ is

A

Ao
=
∂ω

∂µ
= 1 +

1
8π2

∫
d2q

q2

κq4 + µq2 + γ
· (A.6)

Since exact integration in equations (A.4, A.6) is not pos-
sible, and since we are concerned mainly with the limit of
small µ, we expand equations (A.4–A.6) in powers µ. In
equations (A.4, A.5) we keep terms to order µ2, which im-
plies that in equation (A.6) we can keep only terms linear
in µ to remain within the same order of accuracy. For ω
this yields

ω

kBT
' ωo

kBT
+

1
4
√

2

√
γ

κ

+
[

1
16πκ

ln
(
π4

2a4

κ

γ

)
+

1
kBT

]
µ

−
√

2µ2

128κ3/2γ1/2
, (A.7a)

where ωo is the free-energy of a free membrane (d → ∞)
and is given by

ωo

kBT
=

π

8a2
ln
(

πa2κ

2AokBT

)
− 1

4a2
· (A.7b)

This constant will be omitted from now on, since it is not
relevant for the quantities of interest. For d and A we get

αd2

kBT
=
〈h2〉
kBT

' 1
8
√

2γκ
− µ

16πγκ
+

√
2

256(γκ)3/2
µ2

(A.7c)

A

Ao
' 1 +

kBT

16πκ
ln
(
π4

2a4

κ

γ

)
−
√

2kBT

64k3/2γ1/2
µ · (A.7d)

Solving equations (A.7c, A.7d) for γ and µ we find

γ(d, µ)
kBT

' kBT

128κα2d4
− µ

8πκαd2
− µ2

4κkBT

(
2
π
− 1

2

)
(A.8)

and

µ(A/Ao) ' − 8κ
αd2(1− 4

π2 )

[
A

Ao
−
(
A

Ao

)
eq

]
(A.9)

where we have defined(
A

Ao

)
eq

= 1 +
kBT

4πκ
ln

[
π
√

8α
(

κ

kBT

)1/2
d

a

]
· (A.10)

We are now able to perform a Legendre transform to ob-
tain the Helmholtz free-energy per unit area, whose nat-
ural variables are d and Ao/A instead of γ and µ. This is
defined according to

f =

{[
ω − γ ∂ω

∂γ

]
γ(d,µ)

− µ∂ω
∂µ

}
µ(A/Ao)

(A.11)

where the subscripts of the brackets imply the use of equa-
tions (A.4, A.5) for γ(d, µ) and µ(A/Ao). This leads to

f =
(kBT )2

128καd2
+ ν

κ

d2

[
A

Ao
−
(
A

Ao

)
eq

]2

(A.12a)

where

ν =
3

2(1− 4/π2)α
· (A.12b)

From equation (A.12a) we see that a membrane near equi-
librium behaves like an effective spring. Equation (A.12a)
is identical to the result of Bruinsma and Rabin [11].

For a system at constant chemical potential the sec-
ond term in equation (A.12a) is constant and one may
calculate the corresponding compression modulus of the
lamellar phase using B̄ = d ∂2f/∂d2 (see Appendix B).
The result has to be compared [11] with the known ex-
pression due to Helfrich [37],

B̄ =
9π2

64
(kBT )2

κd3
· (A.13)

This implies that α = 1/3π2.
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Appendix B: Generalized Landau-de-Gennes
lamellar free-energy

The Helmhotlz free-energy of the whole lamellar phase
is obtained by summing over the free-energies of the in-
dividual lamellae. Introducing the local variations of the
interlayer spacing δd(r) and of the physical projected area
∆(r), according to equations (13, 14b), leads to the free-
energy given in equation (14a). It is also possible to obtain
the free-energy in terms of the local variation of membrane
volume fraction δφ(r) rather than ∆(r) [11,32]. Since

φ =
aA

dAo
(B.1)

we have, at constant area A,

δφ

φ
+
δd

d
= −δAo

Ao
≡ −∆. (B.2)

Using this in equation (14a), collecting terms, and adding
the Helfrich bending energy, we obtain the long wave-
length generalized free-energy of the lamellar

Flam =
∫

d3r

[
1
2
K
(
∇2
⊥U
)2

+
1
2
B

(
∂U

∂z
− 1

2
(∇⊥U)2

)2

+
1
2
χ−1(δφ)2 + Cc

(
∂U

∂z
− 1

2
(∇⊥U)2

)
δφ

]
(B.3a)

with the following values for the coefficients

B = B̄ + 2µ
κ

d3

[(
A

Ao

)
eq

− kBT

4πκ

]2

(B.3b)

χ−1 = 2µ
κ

da2
(B.3c)

Cc = 2µ
κ

d2a

[(
A

Ao

)
eq

− kBT

4πκ

]
. (B.3d)

Upon minimizing equation (B.3a) over δφ we recover the
familiar free-energy at constant chemical potential [13]

Flam =
∫

d3r

[
1
2
K
(
∇2
⊥U
)2

+
1
2
B̄

(
∂U

∂z
− 1

2
(∇⊥U)2

)2
]
.

(B.4)

The two moduli K and B̄ define the well known smectic
penetration length

√
K/B̄ [13].

Appendix C: Elliptic integrals

Here we express equations (35, 36) in terms of known el-
liptic integrals, as done by Singer [20]. This allows to use
available asymptotic expansions for these known integrals

to rederive equations (39, 42). Equation (36) is first ex-
pressed as [38]

D =
2
Uo

√
B̃

b
t K [t] (C.1)

where

t =
(

1
Y
− 1
)−1/2

; Y =
bU2

o

2a
(C.2)

and where K[k] is the complete elliptic integral of the first
kind [38]

K[k] =
∫ π/2

0

dθ√
1− k2sin2 θ

· (C.3)

Turning to equation (35) we find [38]

gγ̇ =
(

1
2
aU2

o −
1
4
bU4

o

)
D +

2Uoa

t

√
B̃

b
(E[t]−K[t])

+
Uo

√
B̃b

3t

{(
4a
b
− U2

o

)
K[t]− 4

a

b
E[t]

}
(C.4)

where E[k] is the complete elliptic integral of the second
kind [38]

E[k] =
∫ π/2

0

dθ
√

1− k2sin2 θ. (C.5)

Using equation (C.1) to eliminate K[t] in equation (C.4)
we find

gγ̇ =
4

3
√

2
B̃1/2a3/2

b

√
1− Y E[t]

+
Da2

3b
(
3Y − Y 2 − 2

)
. (C.6)

The regime σ ' σc corresponds to Y � 1, and so to
t� 1. Using asymptotic expansions for E[t] and K[t] for
small t [38], we recover equation (39). The regime σ � σc

corresponds to the bulk limit, D � ξ. Here we have Y '
1/2 and t ' 1 and we immediately recover equation (42).
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